
ThreatQuotient

ThreatQ SDK User Guide
Version 1.8.9
May 15, 2024

ThreatQuotient
20130 Lakeview Center Plaza Suite 400

Ashburn, VA 20147

 ThreatQ Supported

Support
Email: support@threatq.com
Web: support.threatq.com

Phone: 703.574.9893

Contents

ThreatQ SDK User Guide
Version 1.8.9 2

Contents

Warning and Disclaimer ... 4
Support ... 5
Introduction ... 6

Installing Pip ... 6
Installing the ThreatQ SDK on a Mac OS .. 6
Installing the ThreatQ SDK on a Windows OS ... 7
Authentication.. 7

OAuth Registration Command ... 8
Flag Options ... 8

Type ... 8
User-Groups ... 8

Working with Indicators ... 10
List All Indicators ... 10
Search for Specific Indicator.. 10
Create a New Indicator .. 11
Adding an Attribute .. 11
Update an Indicator's Status ... 11
Get Related/Linked Objects... 12
Relate/Link Objects... 12
Bulk Uploading Indicators ... 12

Working with Events ... 13
List All Events ... 14
Search for Specific Event.. 14
Create a New Event .. 14

Working with Adversaries .. 16
List All Adversaries.. 16
Search for Specific Adversary.. 16
Create a New Adversary... 17
Adding an Attribute .. 17

Working with Files ... 18
Upload a New File ... 18
Parse and Import the Indicators from a File ... 18

Working with Signatures .. 19
Create a New Signature ... 19

Threat Library Search ... 20
Working with Operations ... 21

Import the Operation Object .. 22
List Enabled Operations and their Actions.. 22
Perform an Operation Action.. 22

Working with Feeds... 24
Import the Feed Object .. 24
Retrieve a Specific Feed by Name... 24

Contents

ThreatQ SDK User Guide
Version 1.8.9 3

Retrieve a Specific Feed by ID ... 25
Enable and Disable a Feed .. 25

Change Log ... 26

ThreatQ SDK User Guide
Version 1.8.9 4

Warning and Disclaimer
ThreatQuotient, Inc. provides this document “as is”, without representation or warranty of any kind,
express or implied, including without limitation any warranty concerning the accuracy, adequacy, or
completeness of such information contained herein. ThreatQuotient, Inc. does not assume
responsibility for the use or inability to use the software product as a result of providing this
information.

Copyright © 2023 ThreatQuotient, Inc.
All rights reserved. This document and the software product it describes are licensed for use under a
software license agreement. Reproduction or printing of this document is permitted in accordance
with the license agreement.

ThreatQ SDK User Guide
Version 1.8.9 5

Support
This integration is designated as ThreatQ Supported.

Support Email: support@threatq.com
Support Web: https://support.threatq.com
Support Phone: 703.574.9893

Integrations/apps/add-ons designated as ThreatQ Supported are fully supported by ThreatQuotient’s
Customer Support team.

ThreatQuotient strives to ensure all ThreatQ Supported integrations will work with the current version
of ThreatQuotient software at the time of initial publishing. This applies for both Hosted instance and
Non-Hosted instance customers.

ThreatQuotient does not provide support or maintenance for integrations, apps, or add-ons
published by any party other than ThreatQuotient, including third-party developers.

ThreatQ SDK User Guide
Version 1.8.9 6

1.
2.

3.

4.

Introduction
The ThreatQ SDK provides methods for accessing the ThreatQ API to extract and customize data. The
ThreatQ SDK User Guide provides some basic examples for using the ThreatQ SDK.

Installing Pip

Before you install the SDK, you must first install Pip. If you have not already installed Pip on your
system, open a terminal window and run the following command:

sudo easy_install pip

Pip installation is not required on a Windows OS.

Upon success, you should see output similar the following:

Searching for pip
Best match: pip 8.0.2
Adding pip 8.0.2 to easy-install.pth file
Installing pip script to /usr/local/bin
Installing pip2.7 script to /usr/local/bin
Installing pip2 script to /usr/local/bin
Using /usr/local/lib/python2.7/site-packages
Processing dependencies for pip
Finished processing dependencies for pip

Installing the ThreatQ SDK on a Mac OS

After you install Pip, as described in Installing Pip, complete the following steps to install the ThreatQ
SDK.

Open a terminal window.
Create a directory called ~/.pip/ and create a file in that directory called pip.conf. Run the
following command:

mkdir ~/.pip; touch ~/.pip/pip.conf

 Open the pip.conf file in a text editor, by running the following command:

open -t pip.conf

In the text editor, enter the following:

[global]
index-url = https://system-updates.threatq.com/pypis
extra-index-url = https://USER:PASSWORD@extensions.threatq.com/threatq/

ThreatQ SDK User Guide
Version 1.8.9 7

5.
6.

1.
2.

3.

integrations
https://USER:PASSWORD@extensions.threatq.com/threatq/sdk

Save and close pip.conf.
In the terminal window, run the following command:

sudo pip install threatqsdk

Installing the ThreatQ SDK on a Windows OS

Complete the following steps to install the ThreatQ SDK.

Open a Command Prompt window
Navigate to C:\Python27\Scripts:

cd c:\Python27\Scripts

Run the following command:

pip install -i https://[your yum/repo credentials]:[your yum/repo
password]@extensions.threatq.com/threatq/sdk threatqsdk

Authentication

First, import the base Threatq object. This will be required to interact with the ThreatQ API.

from threatqsdk import Threatq

Next, authenticate to the API, replacing all values with your specific details.

There are two authentication methods: via username/password and by OAuth Client Credentials.

Username/Password Method

tq_host = 'https://localhost:8443'
username = 'threatq@threatq.com'
password = 'threatquotientthreatquotient'
clientid = '< OAuth Client ID >'
tq = Threatq(tq_host, {'clientid': clientid, 'auth': {

'email': username, 'password': password}})

OAuth Client Credentials Method

You must use the flag True in the final line, as shown below. Failing to use this flag will
result in the application defaulting to the username/password method.

tq_host = '< Your ThreatQ Instance IP >'
clientID = '< OAuth Client ID >'
clientsecretID = '< OAuth Client Secret >'
tq = Threatq(host,(clientID,clientsecretID),True)

ThreatQ SDK User Guide
Version 1.8.9 8

1.
2.

3.

•
•

•
•

•

OAuth Registration Command

You can run a command that allows registering a new private OAuth2 client to be used by custom
integrations. The Client ID/Secret generated by the command can be used by custom integrations to
interact with the API but can’t be used to log into the UI.

SSH to your ThreatQ installation.
Navigate to the api directory using the following command:
cd /var/www/api
Create a new client id and client secret password using the following command:
php artisan threatq:oauth2-client --name="Custom Integration"

You should see output for the new custom integration user:

session_timeout_minutes: 1440
name: Custom Integration
type: private
client_id: ntdjzwe3mduyyjqxyjdiyza5mzyxmtkx
client_secret:
YThlOTBlZjM0YTYxNWM1YjVkODdmMTdjNGY5MzZkYTg4M2RmYmRiZGJmNjk1OTRm
updated_at: 2020-01-14 14:03:27
created_at: 2020-01-14 14:03:27

Flag Options

There are flag options for type and user-groups.

Type

The default type is private. The ThreatQ UI uses a FE/UI specific to Client ID to get /request access
tokens. Further authentication is required to be sent with the client that is trying to access the API for
the command.

The are two options for the type flag:

private - Private Client ID/Secret
public - Client ID without the secret

Flag example:

--type private

User-Groups

All clients, users, and connectors are associated with groups.

There are three options for the user-groups:

admin - can access everything
analyst - can access most threat intel
Some configuration endpoints are not accessible to analysts.
observer - read-only access

ThreatQ SDK User Guide
Version 1.8.9 9

Flag example:

--user_group admin

ThreatQ SDK User Guide
Version 1.8.9 10

•
•
•
•
•
•
•
•

Working with Indicators
The following provides several examples of working with indicators.

List All Indicators
Search for a Specific Indicator
Create a New Indicator
Add an Attribute
Update an Indicator's Status
Get Related/Linked Objects
Relate Link Objects
Bulk Uploading Indicators

List All Indicators

To list all the indicators in ThreatQ, you can use the base tq.get() method to call API endpoints. This
method makes an HTTP GET request, wrapping authentication, against the API.

In this example, we will use the /api/indicators endpoint. This will return a list of dict
representations of an indicator. If we print the first element of the list, we can see the data returned
by the API.

inds = tq.get('/api/indicators')
print inds.get('data')[0]
{
 "last_detected_at": None,
 "hash": "51d81f46d7a042805c96e512a3e122ba",
 "status_id": 1,
 "created_at": "2016-10-13 14:07:56",
 "type_id": 10,
 "updated_at": "2016-10-13 14:07:56",
 "value": "1.234.62.166",
 "id": 1,
 "class": "network"
}

Search for Specific Indicator

To search for a specific indicator, the base tq.get() method accepts a params parameter where we
can specify an indicator value. This will return the same dict representation of an indicator like
above.

ind = tq.get('/api/indicators', params={'value': '8.8.8.8'})
print ind.get('data')
[
 {
 "last_detected_at": null,

ThreatQ SDK User Guide
Version 1.8.9 11

•
•
•

 "hash": "9c709bf480caf30fc107cfbbc107cfbb",
 "status_id": 1,
 "created_at": "2016-10-14 00:02:18",
 "type_id": 10,
 "updated_at": "2016-12-02 09:13:14",
 "value": "8.8.8.8",
 "id": 535253,
 "class": "network"
 }
]

Create a New Indicator

To create an indicator, you will first you will need to import the Indicator and Source objects.

from threatqsdk import Indicator, Source

Next, to create a basic indicator, set the required values:

value
type
status

ind = Indicator(tq)
ind.set_value('example.com')
ind.set_type('FQDN')
ind.set_status('Review')

Finally, upload the indicator and receive the new indicator ID

iid = ind.upload(sources=Source('Test'))

Adding an Attribute

To add an attribute key/value pair to the indicator we created above:

ind.add_attribute('Disposition', 'Safe', sources=Source('Test'))

Update an Indicator's Status

To update an indicator's status, you can utilize the base tq.put() method to make an HTTP PUT
request, wrapping authentication, against the API. To modify an indicator's status we will need its
indicator ID and we will use the /api/indicators/INDICATOR_ID endpoint.

In this example, we will modify the indicator we created above, changing its status from "Review" (we
set this during creation) to "Active." This example will apply as long as iid is a valid indicator ID.

tq.put('/api/indicators/{}'.format(iid), data={'status': 'Active'})

ThreatQ SDK User Guide
Version 1.8.9 12

•
•

Get Related/Linked Objects

To retrieve related or linked objects for an indicator, you can use the get_related_objects()
function. It takes the type of object (Indicator, Event, Adversary, File, etc.) as its only argument.

Note You will need to make sure you have previously imported the object first.

The get_related_object() function is also available to the Event, Adversary, File, and
Signature objects.

In this example, we have an Indicator object, ind, that we want to retrieve all of its related
Indicator and Adversary objects. The result will be a list of Indicator and Adversary objects
respectively.

rel_inds = ind.get_related_objects(Indicator)
rel_advs = ind.get_related_objects(Adversary)

Relate/Link Objects

To relate or link an indicator with another object, you can use the relate_object() function. It
takes a separate instance of an object (Indicator, Event, Adversary, File, etc.) as its only
argument.

The relate_object() function is also available to the Event, Adversary, File, and Signature
objects.

In this example, we have two Indicator objects, ind_a and ind_b, that we want to relate or link
together.

ind_a.relate_object(ind_b)

Bulk Uploading Indicators

In most use-cases, you want to upload a large number of indicators at one time. To do this via the
SDK, you can use the BulkIndicator object and tq.bulkuploadindicators() method.

First, import the BulkIndicator and Source objects:

from threatqsdk import BulkIndicator, Source

Let's assume we have a list of IOC data we want to parse and upload to ThreatQ. We will need to
first translate each into a BulkIndicator and then add them to a new list to be uploaded:
bulk_indicators.

First, let's create our new bulk_indicators list:

bulk_indicators = []

Next, create a BulkIndicator object for each IOC we want to upload. The required values that are
needed to be set are:

ind_value
ind_type

ThreatQ SDK User Guide
Version 1.8.9 13

•

•
•
•

ind_status

bi = BulkIndicator(tq)
bi.set_value(ind_value)
bi.set_type(ind_type)
bi.set_status(ind_status)

You can also add attributes and relate to other ThreatQ objects:

bi.add_attribute('Foo', 'Bar')
bi.relate_indicator('example.com', 'FQDN')
bi.relate_adversary(adversary_id)
bi.relate_event(event_id)

You would repeat/iterate the above over each item in your IOC list (for loop) and append each to
bulk_indicators:

bulk_indicators.append(bi)

Lastly, upload the bulk_indicators using the tq.bulkuploadindicators() method:

tq.bulkuploadindicators(bulk_indicators, source=Source('Test')

Working with Events
The following provides several examples of working with events.

List all Events
Search for a Specific Event
Create a New Event

ThreatQ SDK User Guide
Version 1.8.9 14

List All Events

To list all the events in ThreatQ, you can use the base tq.get() method against the /api/events
endpoint. This will return a list of dict representations of an event. If we print the first element of
the list, we can see the data returned by the API.

events = tq.get('/api/events')
print events.get('data')[0]
{
 "hash": "3ebe478a05e4a7981f94dfcfab31ee14",
 "description": "Desc for Internal Domain Controller Compromised",
 "title": "Internal Domain Controller Compromised",
 "created_at": "2016-10-21 11:43:37",
 "type_id": 5,
 "updated_at": "2016-10-21 11:43:37",
 "happened_at": "2016-10-21 11:43:35",
 "id": 2
}

Search for Specific Event

To search for a specific event, pass the title to the params parameter. This will return the same
dict representation of an event like above.

event = tq.get('/api/events', params={'title': 'Internal Domain Controller
Compromised'})
print event.get('data')
[
 {

"hash": "3ebe478a05e4a7981f94dfcfab31ee14",
"description": "Desc for Internal Domain Controller Compromised",
"title": "Internal Domain Controller Compromised",
"created_at": "2016-10-21 11:43:37",
"type_id": 5,
"updated_at": "2016-10-21 11:43:37",
"happened_at": "2016-10-21 11:43:35",
"id": 2

 }
]

Create a New Event

To create an event, you will first you will need to import the Event and Source objects.

from threatqsdk import Event, Source

Next, to create a basic event, set some required values:

ThreatQ SDK User Guide
Version 1.8.9 15

•
•
•

title
type
date

Optionally, you can also set a description.

event = Event(tq)
event.set_title('OMG MALWARE')
event.set_type('Incident')
event.set_date('2017-01-13 10:59:00')
event.set_desc('Foo')

Finally, upload the event and receive the new event ID

eid = event.upload(sources='Test')

To add an attribute key/value pair to the event we created above:

event.add_attribute('Severity', 'High', sources='Test')

ThreatQ SDK User Guide
Version 1.8.9 16

•
•
•
•

Working with Adversaries
The following provides several examples of working with adversaries.

List all Adversaries
Search for a Specific Adversary
Create a New Adversary
Add an Attribute

List All Adversaries

To list all the adversaries in ThreatQ, you can use the base tq.get() method against the /api/
adversaries endpoint. This will return a list of dict representations of an adversary. If we print
the first element of the list, we can see the data returned by the API.

adversaries = tq.get('/api/adversaries')
print adversaries.get('data')[0]
{
 "updated_at": "2017-10-03 14:30:53",
 "touched_at": "2017-10-03 14:31:04",
 "created_at": "2017-10-03 14:30:53",
 "id": 2,
 "name": "Comment Panda"
}

Search for Specific Adversary

To search for a specific adversary, pass the name to the params parameter. This will return the same
dict representation of an adversary like above.

adversary = tq.get('/api/adversaries', params={'name': 'PLA Unit 61398'})
print adversary.get('data')
[
 {

"updated_at": "2017-10-03 14:30:54",
"touched_at": "2017-10-03 14:31:04",
"created_at": "2017-10-03 14:30:54",
"id": 3,
"name": "PLA Unit 61398"

 }
]

The SDK also has a search function for Adversary objects. Instead of returning the raw response
from the API, the SDK will translate it to an Adversary object. Below, we perform the same search as
above, but instead of a dict object, we are now working with an Adversary object.

ThreatQ SDK User Guide
Version 1.8.9 17

from threatqsdk import Adversary
adv = Adversary(tq)
aid = adv.search('PLA Unit 61398')
print aid
3

Create a New Adversary

To create an adversary, you will first you will need to import the Adversary and Source objects.

from threatqsdk import Adversary, Source

Next, to create a basic adversary, set the required name attribute. You can also set a description.

adv = Adversary(tq)
adv.name = 'APT 99'
adv.description = 'Malicious attack group'

Finally, upload the adversary and receive the new adversary ID

aid = adv.upload(sources=Source('Test'))

Adding an Attribute

To add an attribute key/value pair to the indicator we created above:

adv.add_attribute('Vertical', 'Hospitality', sources=Source('Test'))

ThreatQ SDK User Guide
Version 1.8.9 18

•
•

•
•
•

Working with Files
The following provides several examples of working with files.

Upload a New File
Parse and Import Indicators from a File

Upload a New File

To create a file, you will first you will need to import the File and Source objects.

from threatqsdk import File, Source

Next, to create a basic file, set the required values:

name
ftype
path

Optionally, you can also set a title.

file = File(tq)
file.name = 'my-intel-report'
file.ftype = 'Intelligence Report'
file.path = '~/report.pdf'
file.title = 'My Threat Report'

Finally, upload the file. The SDK will translate the API response and update the File object with the
new file ID. Note this is different behavior from other objects

file.upload(sources=Source('Test'))
print file.fid
1

Parse and Import the Indicators from a File

Sometimes files contain indicator values we may want to parse and add to our Threat Library. The
SDK allows for this use case and only requires that a File be created and uploaded first before being
able to be parsed.

In this example, let's assume that a text file was uploaded and has a file ID of 2. We want to parse all
the indicators, save them as Active and with the source Test Source. The below method use the default
Generic Text parser.

file = File(tq)
file.fid = 2
file.parse_and_import('Test Source', status='Active')

ThreatQ SDK User Guide
Version 1.8.9 19

•
•
•

Working with Signatures
The following provides an example of working with signatures.

Create a New Signature

To create a signature, you will first you will need to import the Signature and Source objects.

from threatqsdk import Signature, Source

Next, to create a basic signature, set the required values:

value
type
status

signature_value = 'alert tcp $HOME_NET 666 -> 1.1.1.1 any (msg:"MALWARE-
BACKDOOR SatansBackdoor.2.0.Beta"; flow:to_client,established; content:"Remote|
3A| "; depth:11; nocase; content:"You are connected to me.|0D 0A|Remote|3A|
Ready for commands"; distance:0; nocase; metadata:ruleset community;
reference:url,www.megasecurity.org/trojans/s/satanzbackdoor/SBD2.0b.html;
reference:url,www3.ca.com/securityadvisor/pest/pest.aspx?id=5260;
classtype:trojan-activity; sid:118; rev:12;)'
sig = Signature(tq)
sig.set_value(signature_value)
sig.set_type('Snort')
sig.set_status('Review')

Finally, upload the signature and receive the new signature ID

sid = sig.upload(sources=Source('Test'))

ThreatQ SDK User Guide
Version 1.8.9 20

•
•
•
•
•

◦

•

Threat Library Search
To perform a Threat Library Search you will first you will need to import the ThreatLibrary object.

from threatqsdk import ThreatLibrary
search = ThreatLibrary(tq) # tq is an instance of the Threatq object

Next, you will need to decide whether you want to construct your own API query, or use a saved
search name to execute a search. If you decide the former, you will need to understand the query
format. The easiest way to learn about the format is to use the “Network” developer tools in your
browser to analyze the searches that you make. Below is an example that will search for all
objects from the source, ‘Analyst’, and has an attribute named, ‘Confidence’
with a value of ‘High:

query = {'+and': [{'source_name': 'Analyst'}, {'attribute': {'name':
'Confidence', 'value': 'High'}]}

If you decide the latter, and want to use a Threat Library Saved Search/Collection, you first need to
create the saved search in the Threat Library. In this example, we’ll name the saved search/collection
High Confidence Indicators. Second, you simply need to reference that name within your code,
like so:

search.get_saved_search('High Confidence Indicators')

What the above snippet will do is fetch the saved search/collection, including the search query and
other metadata surrounding the saved search/collection such as name, hash, etc.

Next, you will want to execute the actual search in order to get the results. The execute() method is
a generator, meaning it yields incremental results. By default, the method yields one object at a time.
You will need to iterate over the call to get the results, like so:

If you used a custom query
for indicator in search.execute('indicators', custom_query=query,
page_limit=100):
If you fetched a saved search
for indicator in search.execute('indicators', page_limit=100):

The above code tells the SDK to fetch all “indicators” based on the query, and limit the results to 100
items per request. You can change the actual object type by modifying “indicators” string to the name
of the object you want.

Here is a full list of parameters that the execute() function supports:

object_type (str): The name of the object you want to fetch
custom_query (dict): A custom query to use (if you aren’t using a saved search) – Optional
page_limit (int): The number of items to return per-request (default: 1000)
page_offset (int): The offset to start at (default: 0)
max_results (int): The maximum amount of results to return (default: None [unlimited])

This is only necessary for a use-case where you may only need ‘x’ amount of results, max.
yield_batches (bool): Determines whether to yield batches of indicators (by page limit). This
forces the method to yield all the results per-request, rather than one at a time (default: False)

ThreatQ SDK User Guide
Version 1.8.9 21

•
◦

•
•
•

fields (list): List of strings specifying which fields to return from the API (default: All fields)
Using this field is optional, but will greatly reduce the memory footprint of your requests
by requesting only the information you need.

Below is a full example of using the ThreatLibrary class to execute a saved search, transform the data,
and upload it in batches to a given API:

from threatqsdk import ThreatLibrary
search = ThreatLibrary(tq) # tq is an instance of the Threatq object
search.get_saved_search('High Confidence Indicators')
uploaded = 0
for data in search.execute('indicators', page_limit=100, yield_batches=True,
fields=['value']:
 to_upload = []
 for indicator in data:

to_upload.append(convert_to_payload(indicator))
 print('Uploading batch of {} indicators'.format(len(to_upload))
 upload_bundle(to_upload)

In addition to executing saved searches, you can also create a named or unnamed saved search. The
difference is, a named saved search will be available via the UI. An unnamed saved search will create a
“hash” for the saved search, which will allow you to reference it via a URL. Though, it will not create a
saved search in the UI.

You can create a saved search executing the create_search() method. Here is an example for
creating a named saved search that looks for keywords:

from threatqsdk import ThreatLibrary
search = ThreatLibrary(tq) # tq is an instance of the Threatq object
search.create_search(
 name='Ransomware Search'
 keywords=[

'NotPetya',
'CryptoLocker',
'WannaCry'

]
)

You can then execute that newly created search by running the execute() function shown in the
previous example.

Here is a full list of parameters that the create_search() function supports:

name (str): The name of the saved search – Optional
keywords (list): List of keywords to search for (OR logic) - Optional
api_query (dict): If you have a literal saved search API query that you’d built, you can specify that
query here, to be saved - Optional

Working with Operations
The following provides several examples of working with operations.

ThreatQ SDK User Guide
Version 1.8.9 22

•
•
•

•
•
•

Import the Operation Object
List Enabled Operations and their Actions
Perform an Operation Action

Import the Operation Object

To interact with Operations, you will first you will need to import the Operation object.

from threatqsdk import Operation

List Enabled Operations and their Actions

To list the enabled Operations, you can use the list_from_tq() function. This is a class method and
will return a list of Operation objects.

ops = Operation.list_from_tq(tq)

To iterate over each resulting Operation and print their actions, you can run the following:

for o in ops:
 print o.name
 for a in o.actions:

print '{}: {}'.format(a['name'], a['description'])
 print '\n'

This will print something similar to:

passive_total
get_passive_dns: Retrieve Passive DNS associated with Indicators
get_WHOIS: Get WHOIS
enrich: Enrichment
get_samples: Get Malware Samples
query_for_registered_domains: Searches WHOIS data by Email Address to return
all domains registered to that Email Address
vulners
search_CVE: Query CVE against Vulners DB

Perform an Operation Action

To perform a specific Operation action, first create a new instance of the Operation object with your
intended Operation name (friendly_name) as the second argument. In this case, we will be
leveraging the PassiveTotal Operation.

op = Operation(tq, 'passive_total')

Next, you can use the execute() function. It takes the following arguments:

action name
ThreatQ object ID
ThreatQ object type

ThreatQ SDK User Guide
Version 1.8.9 23

In this example, we are running the Get WHOIS (get_WHOIS) action against and Indicator of ID 43.

iid = 43
resp = op.execute('get_WHOIS', iid, 'indicator')

The execute() function will return the resulting data in JSON format.

{
 "indicators": [

{
"type": "Email Address",
"value": "abuse@godaddy.com"

},
{

"type": "FQDN",
"value": "ns11.domaincontrol.com"

},
{

"type": "FQDN",
"value": "ns12.domaincontrol.com"

},
{

"type": "FQDN",
"value": "whois.godaddy.com"

}
],
 "attributes": [

{
"name": "Registrant Contact Name",
"value": "******** ********"

},
{

"name": "Registrar",
"value": "GoDaddy.com, LLC"

},
{

"name": "Updated At",
"value": "May 23 2017 11:52:46 AM "

},
{

"name": "Registered Date",
"value": "May 22 2014 05:11:26 PM "

},
{

"name": "Expires At",
"value": "May 22 2018 05:11:26 PM "

}
],
 "raw_data": {

"contactEmail": "abuse@godaddy.com",
"whoisServer": "whois.godaddy.com",
"name": "******** ********",

ThreatQ SDK User Guide
Version 1.8.9 24

•
•
•
•

"billing": [],
"nameServers": [

"ns11.domaincontrol.com",
"ns12.domaincontrol.com"

],
"registered": "2014-05-22T17:11:26.000-0700",
"lastLoadedAt": "2017-12-19T11:13:18.419-0800",
"telephone": "N/A",
"registryUpdatedAt": "2017-05-23T11:52:46.000-0700",
"admin": [],
"expiresAt": "2018-05-22T17:11:26.000-0700",
"tech": [],
"registrar": "GoDaddy.com, LLC",
"domain": "aadroid.net",
"organization": "N/A",
"zone": [],
"registrant": {

"name": "******** ********",
"email": "abuse@godaddy.com"

}
 }
}

Working with Feeds
The following provides several examples of working with feeds.

Import the Feed Object
Retrieve a Specific Feed by Name
Retrieve a Specific Feed by ID
Enable and Disable a Feed

Import the Feed Object

To interact with Incoming Feeds, you will first you will need to import the Feed object.

from threatqsdk import Feed

Retrieve a Specific Feed by Name

To retrieve the settings for a specific feed, querying by name, you will first need to create a new
instance of a Feed object and use the by_name() function, which takes the feed name as its only
parameter.

f = Feed(tq)
f.by_name('Bambenek Consulting - Murofet Master')

ThreatQ SDK User Guide
Version 1.8.9 25

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

This will fill the properties of the Feed object you created (in the example above, f). Feed objects have
the following properties:

category
gate_oauth2_client_id
name
connector_definition_id
updated_at
is_active
created_at
namespace
last_import_at
last_import_count
frequency
tlp_id
indicator_status_id
category_id
id
custom_fields

Retrieve a Specific Feed by ID

Similar to above, if you want to query by feed ID instead of name, you will first need to create a new
instance of a Feed object and use the by_id() function, which takes the feed ID as its only
parameter.

f = Feed(tq)
f.by_id(1)

Enable and Disable a Feed

To enable a feed, you can use the enable() function.

f.enable()

Likewise, to disable a feed, you can use the disable() function.

f.disable()

ThreatQ SDK User Guide
Version 1.8.9 26

•
◦

•
◦

◦

•
◦

•
◦

•
◦

•
◦

•
◦

•
◦

◦

•
◦

◦

◦

Change Log

Version 1.8.8
Added a Timeout parameter to the Get function.

Version 1.8.7
Fixed an issue where get_saved_search() failed to find a data collection if it was not
on the first page of the API response.
Updated Authentication section of the guide to include authenticating via OAuth
Credentials.

Version 1.8.6
Fixed an issue that would cause the Threat Library total results to display an incorrect
value.

Version 1.8.5
Resolved a Python 3/2 issue.

Version 1.8.4
Fixed a pagination bug.

Version 1.8.3
Added cursormark support.

Version 1.8.2
Refactored SDK to allow pylint to give scores greater than 8.

Version 1.8.1
Added Monkey Patch to fix requests bug noted at
https://github.com/psf/requests/issues/3829.
Added optional sort field to Threat Library code.

Version 1.8.0
Added preliminary Python 3 support.
Added dependency fixes.
Threat Library Search replaces the Advanced Search.

•

◦

Version 1.8.9
Added support for HTTP connections within a trusted K8s environment.

https://github.com/psf/requests/issues/3829

	Warning and Disclaimer
	Support
	Introduction
	Installing Pip
	Installing the ThreatQ SDK on a Mac OS
	Installing the ThreatQ SDK on a Windows OS
	Authentication
	OAuth Registration Command
	Flag Options
	Type
	User-Groups

	Working with Indicators
	List All Indicators
	Search for Specific Indicator
	Create a New Indicator
	Adding an Attribute
	Update an Indicator's Status
	Get Related/Linked Objects
	Relate/Link Objects
	Bulk Uploading Indicators

	Working with Events
	List All Events
	Search for Specific Event
	Create a New Event

	Working with Adversaries
	List All Adversaries
	Search for Specific Adversary
	Create a New Adversary
	Adding an Attribute

	Working with Files
	Upload a New File
	Parse and Import the Indicators from a File

	Working with Signatures
	Create a New Signature

	Threat Library Search
	Working with Operations
	Import the Operation Object
	List Enabled Operations and their Actions
	Perform an Operation Action

	Working with Feeds
	Import the Feed Object
	Retrieve a Specific Feed by Name
	Retrieve a Specific Feed by ID
	Enable and Disable a Feed

	Change Log

