
ThreatQ SDK User Guide

Version 1.7.0



Warning and Disclaimer

ThreatQuotient, Inc. provides this document “as is”, without representation or warranty of

any kind, express or implied, including without limitation any warranty concerning the

accuracy, adequacy, or completeness of such information contained herein. ThreatQuo-

tient, Inc. does not assume responsibility for the use or inability to use the software

product as a result of providing this information.

ThreatQ

ThreatQ SDK v1.7.0 2



Copyright © 2018 ThreatQuotient, Inc.

All rights reserved. This document and the software product it describes are licensed for

use under a software license agreement. Reproduction or printing of this document is

permitted in accordance with the license agreement.

Last Updated: Friday, February 2, 2018

ThreatQ

ThreatQ SDK v1.7.0 3



Contents

Introduction 7

Installing Pip 7

Installing the ThreatQ SDK 7

Authentication 8

Working with Indicators 10

List All Indicators 10

Search for a Specific Indicator 11

Create a New Indicator 12

Add an Attribute 12

Update an Indicator's Status 13

Get Related/Linked Objects 13

Relate Link Objects 14

Bulk Uploading Indicators 14

Working with Events 16

List All Events 16

Search for a Specific Event 17

ThreatQ

ThreatQ SDK v1.7.0 4



Create a New Event 17

Working with Adversaries 19

List All Adversaries 19

Search for a Specific Adversary 20

Create a New Adversary 21

Add an Attribute 21

Working with Files 22

Upload a New File 22

Parse and Import Indicators from a File 23

Working with Signatures 24

Create a New Signature 24

Advanced Search 26

Working with Operations 28

Import the Operation Object 28

List Enabled Operations and their Actions 28

Perform an Operation Action 29

Working with Feeds 33

ThreatQ

ThreatQ SDK v1.7.0 5



Import the Feed Object 33

Retrieve a Specific Feed by Name 33

Retrieve a Specific Feed by ID 34

Enable and Disable a Feed 35

ThreatQ

ThreatQ SDK v1.7.0 6



Introduction

The purpose of this guide is to provide some basic examples for using the ThreatQ SDK.

InstallingPip

Before you install the SDK, you must first install Pip. If you have not already installed Pip

on your system, open a terminal window and run the following command:

sudo easy_install pip

Upon success, you should see output similar the following:

Searching for pip

Best match: pip 8.0.2

Adding pip 8.0.2 to easy-install.pth file

Installing pip script to /usr/local/bin

Installing pip2.7 script to /usr/local/bin

Installing pip2 script to /usr/local/bin

Using /usr/local/lib/python2.7/site-packages

Processing dependencies for pip

Finished processing dependencies for pip

InstallingtheThreatQSDK

1. Open a terminal window.

2. Create a directory called ~/.pip/ and create a file in that directory called pip.conf.

Run the following command:

ThreatQ Introduction

ThreatQ SDK v1.7.0 7



mkdir ~/.pip; touch ~/.pip/pip.conf

3.  Open the pip.conf file in a text editor, by running the following command:
open -t pip.conf

4. In the text editor, enter the following:

5. Save and close pip.conf.

6. In the terminal window, run the following command:
sudo pip install threatqsdk

Authentication

Before using the SDK, import the base Threatq object. This is required to interact with

the ThreatQ API.

from threatqsdk import Threatq

Next, authenticate to the API, replacing all values with your specific details.

tq_host = 'https://localhost:8443'

username = 'threatq@threatq.com'

password = 'threatquotientthreatquotient'

clientid = '< OAUTH TOKEN >'

tq = Threatq(tq_host, {'clientid': clientid, 'auth': {

ThreatQ Introduction

ThreatQ SDK v1.7.0 8



'email': username, 'password': pass-

word}})

ThreatQ Introduction

ThreatQ SDK v1.7.0 9



Working with Indicators

The following provides several examples of working with indicators.

l List All Indicators

l Search for a Specific Indicator

l Create a New Indicator

l Add an Attribute

l Update an Indicator's Status

l Get Related/Linked Objects

l Relate Link Objects

l Bulk Uploading Indicators

ListAll Indicators

To list all the indicators in ThreatQ, you can use the base tq.get() method to call API

endpoints. This method makes an HTTP GET request, wrapping authentication against

the API.

In this example, use the /api/indicators endpoint. This will return a list of dict rep-

resentations of an indicator. If you print the first element of the list, you will see the fol-

lowing data returned by the API.

inds = tq.get('/api/indicators')

print inds.get('data')[0]

{

"last_detected_at": None,

"hash": "51d81f46d7a042805c96e512a3e122ba",

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 10



"status_id": 1,

"created_at": "2016-10-13 14:07:56",

"type_id": 10,

"updated_at": "2016-10-13 14:07:56",

"value": "1.234.62.166",

"id": 1,

"class": "network"

}

SearchforaSpecificIndicator

To search for a specific indicator, the base tq.get() method accepts a params para-

meter where you can specify an indicator value. This returns the same dict rep-

resentation of an indicator as above.

ind = tq.get('/api/indicators', params={'value': '8.8.8.8'})

print ind.get('data')

[

{

"last_detected_at": null,

"hash": "9c709bf480caf30fc107cfbbc107cfbb",

"status_id": 1,

"created_at": "2016-10-14 00:02:18",

"type_id": 10,

"updated_at": "2016-12-02 09:13:14",

"value": "8.8.8.8",

"id": 535253,

"class": "network"

}

]

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 11



CreateaNewIndicator

To create an indicator, you must import the Indicator and Source objects.

from threatqsdk import Indicator, Source

Next, to create a basic indicator, set the required values:

l value

l type

l status

ind = Indicator(tq)

ind.set_value('example.com')

ind.set_type('FQDN')

ind.set_status('Review')

Finally, upload the indicator and receive the new indicator ID

iid = ind.upload(sources=Source('Test'))

AddanAttribute

To add an attribute key/value pair to the indicator you created above:

ind.add_attribute('Disposition', 'Safe', sources=Source

('Test'))

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 12



UpdateanIndicator'sStatus

To update an indicator's status, you can utilize the base tq.put() method to make an

HTTP PUT request, wrapping authentication against the API. To modify an indicator's

status, you will need its indicator ID to use the /api/indicators/INDICATOR_ID endpoint.

In this example, you will modify the indicator you created above, changing its status from

"Review" (set during creation) to "Active." This example will apply as long as iid is a

valid indicator ID.

tq.put('/api/indicators/{}'.format(iid), data={'status': 'Act-

ive'})

GetRelated/LinkedObjects

To retrieve related or linked objects for an indicator, you can use the get_related_

objects() function. It takes the type of object (Indicator, Event, Adversary, File,

etc.) as its only argument.

Note: You will need to make sure you have previously imported the object first.

The get_related_object() function is also available to the Event, Adversary, File,

and Signature objects.

In this example, we have an Indicator object, ind, that we want to retrieve all of its

related Indicator and Adversary objects. The result will be a list of Indicator and

Adversary objects respectively.

rel_inds = ind.get_related_objects(Indicator)

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 13



rel_advs = ind.get_related_objects(Adversary)

RelateLinkObjects

To relate or link an indicator with another object, you can use the relate_object() func-

tion. It takes a separate instance of an object (Indicator, Event, Adversary, File,

etc.) as its only argument.

The relate_object() function is also available to the Event, Adversary, File, and Sig-

nature objects.

In this example, we have two Indicator objects, ind_a and ind_b, that we want to relate

or link together.

ind_a.relate_object(ind_b)

BulkUploadingIndicators

In most use-cases, you want to upload a large number of indicators at one time. To do

this via the SDK, you can use the BulkIndicator object and tq.bulkuploadindicators

() method.

First, import the BulkIndicator and Source objects:

from threatqsdk import BulkIndicator, Source

Let's assume that you have a list of IOC data you want to parse and upload to ThreatQ.

You must translate each into a BulkIndicator and then add them to a new list to be

uploaded: bulk_indicators.

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 14



First, create a new bulk_indicators list:

bulk_indicators = []

Next, create a BulkIndicator object for each IOC we want to upload. The required val-

ues that need to be set are:

l ind_value

l ind_type

l ind_status

bi = BulkIndicator(tq)

bi.set_value(ind_value)

bi.set_type(ind_type)

bi.set_status(ind_status)

You can also add attributes and relate to other ThreatQ objects:

bi.add_attribute('Foo', 'Bar')

bi.relate_indicator('example.com', 'FQDN')

bi.relate_adversary(adversary_id)

bi.relate_event(event_id)

You would repeat/iterate the above over each item in your IOC list (for loop) and

append each to bulk_indicators:

bulk_indicators.append(bi)

Lastly, upload the bulk_indicators using the tq.bulkuploadindicators() method:

tq.bulkuploadindicators(bulk_indicators, source=Source('Test')

ThreatQ Working with Indicators

ThreatQ SDK v1.7.0 15



Working with Events

The following provides several examples of working with events.

l List All Indicators

l Search for a Specific Event

l Create a New Event

ListAllEvents

To list all the events in ThreatQ, you can use the base tq.get() method against the /ap-

i/events endpoint. This will return a list of dist representations of an event. If you print

the first element of the list, you can see the data returned by the API.

events = tq.get('/api/events')

print events.get('data')[0]

{

"hash": "3ebe478a05e4a7981f94dfcfab31ee14",

"description": "Desc for Internal Domain Controller Com-

promised",

"title": "Internal Domain Controller Compromised",

"created_at": "2016-10-21 11:43:37",

"type_id": 5,

"updated_at": "2016-10-21 11:43:37",

"happened_at": "2016-10-21 11:43:35",

"id": 2

}

ThreatQ Working with Events

ThreatQ SDK v1.7.0 16



SearchforaSpecificEvent

To search for a specific event, pass the title to the params parameter. This will return

the same dict representation of an event like above.

event = tq.get('/api/events', params={'title': 'Internal

Domain Controller Compromised'})

print event.get('data')

[

{

"hash": "3ebe478a05e4a7981f94dfcfab31ee14",

"description": "Desc for Internal Domain Controller

Compromised",

"title": "Internal Domain Controller Compromised",

"created_at": "2016-10-21 11:43:37",

"type_id": 5,

"updated_at": "2016-10-21 11:43:37",

"happened_at": "2016-10-21 11:43:35",

"id": 2

}

]

CreateaNewEvent

To create an event, you must import the Event and Source objects.

from threatqsdk import Event, Source

Next, to create a basic event, set some required values:

ThreatQ Working with Events

ThreatQ SDK v1.7.0 17



l title

l type

l date

Optionally, you can also set a description.

event = Event(tq)

event.set_title('OMG MALWARE')

event.set_type('Incident')

event.set_date('2017-01-13 10:59:00')

event.set_desc('Foo')

Finally, upload the event and receive the new event ID

eid = event.upload(sources='Test')

To add an attribute key/value pair to the event we created above:

event.add_attribute('Severity', 'High', sources='Test')

ThreatQ Working with Events

ThreatQ SDK v1.7.0 18



Working with Adversaries

The following provides several examples of working with adversaries.

l List All Adversaries

l Search for a Specific Adversary

l Create a New Adversary

l Add an Attribute

ListAllAdversaries

To list all the adversaries in ThreatQ, you can use the base tq.get method against the

api/adversaries endpoint. This will return a list of dict representations of an

adversary. If we print the first element of the list, we can see the data returned by the

API.

adversaries = tq.get('/api/adversaries')

print adversaries.get('data')[0]

{

"updated_at": "2017-10-03 14:30:53",

"touched_at": "2017-10-03 14:31:04",

"created_at": "2017-10-03 14:30:53",

"id": 2,

"name": "Comment Panda"

}

ThreatQ Working with Adversaries

ThreatQ SDK v1.7.0 19



SearchforaSpecificAdversary

To search for a specific adversary, pass the name to the params parameter. This will

return the same dict representation of an adversary as above.

adversary = tq.get('/api/adversaries' params={'name': 'PLA

Unit 61398'})

print adversary.get('data')

[

{

"updated_at": "2017-10-03 14:30:54",

"touched_at": "2017-10-03 14:31:04",

"created_at": "2017-10-03 14:30:54",

"id": 3,

"name": "PLA Unit 61398"

}

]

The SDK also has a search function for Adversary objects. Instead of returning the raw

response from the API, the SDK will translate it to an Adversary object. Below, perform

the same search as above, but instead of a dict object, we are now working with an

Adversary object.

from threatqsdk import Adversary

adv = Adversary(tq)

aid = adv.search('PLA Unit 61398')

print aid

3

ThreatQ Working with Adversaries

ThreatQ SDK v1.7.0 20



CreateaNewAdversary

To create an adversary, you must import the Adversary and Source objects.

from threatqsdk import Adversary, Source

Next, to create a basic adversary, set the required name attribute. You can also set a

description.

adv = Adversary(tq)

adv.name = 'APT 99'

adv.description = 'Malicious attack group'

Finally, upload the adversary and receive the new adversary ID

aid = adv.upload(sources=Source('Test'))

AddanAttribute

To add an attribute key/value pair to the iadversary you created above

adv.add_attribute('Vertical', 'Hospitality', sources=Source

('Test'))

ThreatQ Working with Adversaries

ThreatQ SDK v1.7.0 21



Working with Files

The following provides several examples of working with files.

l Upload a New File

l Parse and Import Indicators from a File

UploadaNewFile

To create a file, you must import the File and Source objects.

from threatqsdk import File, Source

Next, to create a basic file, set the required values:

l name

l ftype

l path

Optionally, you can also set a title.

file = File(tq)

file.name = 'my-intel-report'

file.ftype = 'Intelligence Report'

file.path = '~/report.pdf'

file.title = 'My Threat Report'

Finally, upload the file. The SDK will translate the API response and update the File

object with the new file ID.

ThreatQ Working with Files

ThreatQ SDK v1.7.0 22



Note:This behavior differs from other objects.

file.upload(sources=Source('Test'))

print file.fid

1

ParseandImportIndicatorsfromaFile

At times, files contain indicator values you may want to parse and add to your Threat

Library. The SDK allows for this use case and only requires that a File be created and

uploaded first before being parsed.

In this example, let's assume that a text file was uploaded and has a file ID of 2. To

parse all the indicators, save them as Active and with the source Test Source The

method below uses the default Generic Text parser.

file = File(tq)

file.fid = 2

file.parse_and_import('Test Source', status='Active')

ThreatQ Working with Files

ThreatQ SDK v1.7.0 23



Working with Signatures

The following provides an example of working with signatures.

Create a New Signature

CreateaNewSignature

To create a signature, you will first you will need to import the Signature and Source

objects.

from threatqsdk import Signature, Source

Next, to create a basic signature, set the required values:

l value

l type

l status

signature_value = 'alert tcp $HOME_NET 666 -> 1.1.1.1 any

(msg:"MALWARE-BACKDOOR SatansBackdoor.2.0.Beta"; flow:to_cli-

ent,established; content:"Remote|3A| "; depth:11; nocase; con-

tent:"You are connected to me.|0D 0A|Remote|3A| Ready for

commands"; distance:0; nocase; metadata:ruleset community; ref-

erence:url,www.-

megasecurity.org/trojans/s/satanzbackdoor/SBD2.0b.html;

ref-

erence:url,www3.ca.com/securityadvisor/pest/pest.aspx?id=5260;

classtype:trojan-activity; sid:118; rev:12;)'

sig = Signature(tq)

ThreatQ Working with Signatures

ThreatQ SDK v1.7.0 24



sig.set_value(signature_value)

sig.set_type('Snort')

sig.set_status('Review')

Finally, upload the signature and receive the new signature ID

sid = sig.upload(sources=Source('Test'))

ThreatQ Working with Signatures

ThreatQ SDK v1.7.0 25



Advanced Search

To perform an Advanced Search (legacy), you will first you will need to import the

AdvancedSearch object.

from threatqsdk import AdvancedSearch

Next, create a dict of your query parameters. You can copy the request being made by

the UI using Developer Tools in your browser. In this example, we are searching for all

indicators with the source of Malware Domain List.

query_params = {'indicators': [[{'field': 'source',

'operator': 'is', 'value': 'Malware Domain List'}]]}

Next, perform the search using the query parameters. The execute() function returns an

generator of Indicator objects. This makes lopping through the results efficient.

adv_search = AdvancedSearch(tq, query_params)

search_results = adv_search.execute()

You can then iterate over each item in the search results. Each Indicator result will

have their value, iid, typename, and statusname set. Below, we iterate through the res-

ults and print each indicator value.

for ind in search_results:

print ind.value

ec2-54-72-9-51.eu-west-1.compute.amazonaws.com

54.72.9.51

ssl-6582datamanager.de

104.31.75.147

60.250.76.52

down.mykings.pw

ThreatQ Advanced Search

ThreatQ SDK v1.7.0 26



down.mykings.pw:8888/ups.rar

alegroup.info

If instead you want to create a list of the search results, you can do the following:

search_results = adv_search.execute()

new_search_results = [r for r in search_results]

ThreatQ Advanced Search

ThreatQ SDK v1.7.0 27



Working with Operations

The following provides several examples of working with operations.

l Import the Operation Object

l List Enabled Operations and their Actions

l Perform an Operation Action

ImporttheOperationObject

To interact with Operations, you will first you will need to import the Operation object.

from threatqsdk import Operation

ListEnabledOperationsandtheirActions

To list the enabled Operations, you can use the list_from_tq() function. This is a class

method and will return a list of Operation objects.

ops = Operation.list_from_tq(tq)

To iterate over each resulting Operation and print their actions, you can run the fol-

lowing:

for o in ops:

print o.name

for a in o.actions:

print '{}: {}'.format(a['name'], a['description'])

print '\n'

ThreatQ Working with Operations

ThreatQ SDK v1.7.0 28



This will print something similar to:

passive_total

get_passive_dns: Retrieve Passive DNS associated with Indic-

ators

get_WHOIS: Get WHOIS

enrich: Enrichment

get_samples: Get Malware Samples

query_for_registered_domains: Searches WHOIS data by Email

Address to return all domains registered to that Email Address

vulners

search_CVE: Query CVE against Vulners DB

PerformanOperationAction

To perform a specific Operation action, first create a new instance of the Operation

object with your intended Operation name (friendly_name) as the second argument. In

this case, we will be leveraging the PassiveTotal Operation.

op = Operation(tq, 'passive_total')

Next, you can use the execute() function. It takes the following arguments:

l action name

l ThreatQ object ID

l ThreatQ object type

ThreatQ Working with Operations

ThreatQ SDK v1.7.0 29



In this example, we are running the Get WHOIS (get_WHOIS) action against and Indicator

of ID 43.

iid = 43

resp = op.execute('get_WHOIS', iid, 'indicator')

The execute() function will return the resulting data in JSON format.

{

"indicators": [

{

"type": "Email Address",

"value": "abuse@godaddy.com"

},

{

"type": "FQDN",

"value": "ns11.domaincontrol.com"

},

{

"type": "FQDN",

"value": "ns12.domaincontrol.com"

},

{

"type": "FQDN",

"value": "whois.godaddy.com"

}

],

"attributes": [

{

"name": "Registrant Contact Name",

"value": "******** ********"

},

ThreatQ Working with Operations

ThreatQ SDK v1.7.0 30



{

"name": "Registrar",

"value": "GoDaddy.com, LLC"

},

{

"name": "Updated At",

"value": "May 23 2017 11:52:46 AM "

},

{

"name": "Registered Date",

"value": "May 22 2014 05:11:26 PM "

},

{

"name": "Expires At",

"value": "May 22 2018 05:11:26 PM "

}

],

"raw_data": {

"contactEmail": "abuse@godaddy.com",

"whoisServer": "whois.godaddy.com",

"name": "******** ********",

"billing": [],

"nameServers": [

"ns11.domaincontrol.com",

"ns12.domaincontrol.com"

],

"registered": "2014-05-22T17:11:26.000-0700",

"lastLoadedAt": "2017-12-19T11:13:18.419-0800",

"telephone": "N/A",

"registryUpdatedAt": "2017-05-23T11:52:46.000-0700",

ThreatQ Working with Operations

ThreatQ SDK v1.7.0 31



"admin": [],

"expiresAt": "2018-05-22T17:11:26.000-0700",

"tech": [],

"registrar": "GoDaddy.com, LLC",

"domain": "aadroid.net",

"organization": "N/A",

"zone": [],

"registrant": {

"name": "******** ********",

"email": "abuse@godaddy.com"

}

}

}

ThreatQ Working with Operations

ThreatQ SDK v1.7.0 32



Working with Feeds

The following provides several examples of working with feeds.

l Import the Feed Object

l Retrieve a Specific Feed by Name

l Retrieve a Specific Feed by ID

l Enable and Disable a Feed

ImporttheFeedObject

To interact with Incoming Feeds, you will first you will need to import the Feed object.

from threatqsdk import Feed

RetrieveaSpecificFeedbyName

To retrieve the settings for a specific feed, querying by name, you will first need to create

a new instance of a Feed object and use the by_name() function, which takes the feed

name as its only parameter.

f = Feed(tq)

f.by_name('Bambenek Consulting - Murofet Master')

This will fill the properties of the Feed object you created (in the example above, f).

Feed objects have the following properties:

ThreatQ Working with Feeds

ThreatQ SDK v1.7.0 33



l category

l gate_oauth2_client_id

l name

l connector_definition_id

l updated_at

l is_active

l created_at

l namespace

l last_import_at

l last_import_count

l frequency

l tlp_id

l indicator_status_id

l category_id

l id

l custom_fields

RetrieveaSpecificFeedbyID

Similar to above, if you want to query by feed ID instead of name, you will first need to

create a new instance of a Feed object and use the by_id() function, which takes the

feed ID as its only parameter.

f = Feed(tq)

f.by_id(1)

ThreatQ Working with Feeds

ThreatQ SDK v1.7.0 34



EnableandDisableaFeed

To enable a feed, you can use the enable() function.

f.enable()

Likewise, to disable a feed, you can use the disable() function.

f.disable()

ThreatQ Working with Feeds

ThreatQ SDK v1.7.0 35


	Introduction
	Installing Pip
	Installing the ThreatQ SDK
	Authentication

	Working with Indicators
	List All Indicators
	Search for a Specific Indicator
	Create a New Indicator
	Add an Attribute
	Update an Indicator's Status
	Get Related/Linked Objects
	Relate Link Objects
	Bulk Uploading Indicators

	Working with Events
	List All Events
	Search for a Specific Event
	Create a New Event

	Working with Adversaries
	List All Adversaries
	Search for a Specific Adversary
	Create a New Adversary
	Add an Attribute

	Working with Files
	Upload a New File
	Parse and Import Indicators from a File

	Working with Signatures
	Create a New Signature

	Advanced Search
	Working with Operations
	Import the Operation Object
	List Enabled Operations and their Actions
	Perform an Operation Action

	Working with Feeds
	Import the Feed Object
	Retrieve a Specific Feed by Name
	Retrieve a Specific Feed by ID
	Enable and Disable a Feed


