
ThreatQ SDK User Guide

Version 1.6.7



Warning and Disclaimer

ThreatQuotient, Inc. provides this document “as is”, without representation or warranty of

any kind, express or implied, including without limitation any warranty concerning the

accuracy, adequacy, or completeness of such information contained herein. ThreatQuo-

tient, Inc. does not assume responsibility for the use or inability to use the software

product as a result of providing this information.

ThreatQ

ThreatQ SDK v1.6.7 2



Copyright © 2017 ThreatQuotient, Inc.

All rights reserved. This document and the software product it describes are licensed for

use under a software license agreement. Reproduction or printing of this document is

permitted in accordance with the license agreement.

Last Updated: Saturday, October 28, 2017

ThreatQ

ThreatQ SDK v1.6.7 3



Contents

Introduction 6

Installation 6

Authentication 6

Working with Indicators 7

List All Indicators 7

Search for a Specific Indicator 8

Create a New Indicator 9

Add an Attribute 9

Update an Indicator's Status 10

Bulk Uploading Indicators 10

Working with Events 12

List All Events 12

Search for a Specific Event 13

Create a New Event 13

Working with Adversaries 15

List All Adversaries 15

ThreatQ

ThreatQ SDK v1.6.7 4



Search for a Specific Adversary 16

Create a New Adversary 17

Add an Attribute 17

Working with Files 18

Upload a New File 18

Parse and Import Indicators from a File 19

ThreatQ

ThreatQ SDK v1.6.7 5



Introduction

The purpose of this guide is to provide some basic examples for using the ThreatQ SDK.

Installation

Run the following command to install the SDK.

$ pip install threatqsdk-1.6.7-py2-none-any.whl

Authentication

Before using the SDK, import the base Threatq object. This is required to interact with

the ThreatQ API.

from threatqsdk import Threatq

Next, authenticate to the API, replacing all values with your specific details.

tq_host = 'https://localhost:8443'

username = 'threatq@threatq.com'

password = 'threatquotientthreatquotient'

clientid = '< OAUTH TOKEN >'

tq = Threatq(tq_host, {'clientid': clientid, 'auth': {

'email': username, 'password': pass-

word}})

ThreatQ Introduction

ThreatQ SDK v1.6.7 6



Working with Indicators

The following provides several examples of working with indicators.

l List All Indicators

l Search for a Specific Indicator

l Create a New Indicator

l Add an Attribute

l Update an Indicator's Status

l Bulk Uploading Indicators

ListAll Indicators

To list all the indicators in ThreatQ, you can use the base tq.get() method to call API

endpoints. This method makes an HTTP GET request, wrapping authentication against

the API.

In this example, use the /api/indicators endpoint. This will return a list of dict rep-

resentations of an indicator. If you print the first element of the list, you will see the fol-

lowing data returned by the API.

inds = tq.get('/api/indicators')

print inds.get('data')[0]

{

"last_detected_at": None,

"hash": "51d81f46d7a042805c96e512a3e122ba",

"status_id": 1,

"created_at": "2016-10-13 14:07:56",

ThreatQ Working with Indicators

ThreatQ SDK v1.6.7 7



"type_id": 10,

"updated_at": "2016-10-13 14:07:56",

"value": "1.234.62.166",

"id": 1,

"class": "network"

}

SearchforaSpecificIndicator

To search for a specific indicator, the base tq.get() method accepts a params para-

meter where you can specify an indicator value. This returns the same dict rep-

resentation of an indicator as above.

ind = tq.get('/api/indicators', params={'value': '8.8.8.8'})

print ind.get('data')

[

{

"last_detected_at": null,

"hash": "9c709bf480caf30fc107cfbbc107cfbb",

"status_id": 1,

"created_at": "2016-10-14 00:02:18",

"type_id": 10,

"updated_at": "2016-12-02 09:13:14",

"value": "8.8.8.8",

"id": 535253,

"class": "network"

}

]

ThreatQ Working with Indicators

ThreatQ SDK v1.6.7 8



CreateaNewIndicator

To create an indicator, you must import the Indicator and Source objects.

from threatqsdk import Indicator, Source

Next, to create a basic indicator, set the required values:

l value

l type

l status

ind = Indicator(tq)

ind.set_value('example.com')

ind.set_type('FQDN')

ind.set_status('Review')

Finally, upload the indicator and receive the new indicator ID

iid = ind.upload(sources=Source('Test'))

AddanAttribute

To add an attribute key/value pair to the indicator you created above:

ind.add_attribute('Disposition', 'Safe', sources=Source

('Test'))

ThreatQ Working with Indicators

ThreatQ SDK v1.6.7 9



UpdateanIndicator'sStatus

To update an indicator's status, you can utilize the base tq.put() method to make an

HTTP PUT request, wrapping authentication against the API. To modify an indicator's

status, you will need its indicator ID to use the /api/indicators/INDICATOR_ID endpoint.

In this example, you will modify the indicator you created above, changing its status from

"Review" (set during creation) to "Active." This example will apply as long as iid is a

valid indicator ID.

tq.put('/api/indicators/{}'.format(iid), data={'status': 'Act-

ive'})

BulkUploadingIndicators

In most use-cases, you want to upload a large number of indicators at one time. To do

this via the SDK, you can use the BulkIndicator object and tq.bulkuploadindicators

() method.

First, import the BulkIndicator and Source objects:

from threatqsdk import BulkIndicator, Source

Let's assume that you have a list of IOC data you want to parse and upload to ThreatQ.

You must translate each into a BulkIndicator and then add them to a new list to be

uploaded: bulk_indicators.

First, create a new bulk_indicators list:

bulk_indicators = []

ThreatQ Working with Indicators

ThreatQ SDK v1.6.7 10



Next, create a BulkIndicator object for each IOC we want to upload. The required val-

ues that need to be set are:

l ind_value

l ind_type

l ind_status

bi = BulkIndicator(tq)

bi.set_value(ind_value)

bi.set_type(ind_type)

bi.set_status(ind_status)

You can also add attributes and relate to other ThreatQ objects:

bi.add_attribute('Foo', 'Bar')

bi.relate_indicator('example.com', 'FQDN')

bi.relate_adversary(adversary_id)

bi.relate_event(event_id)

You would repeat/iterate the above over each item in your IOC list (for loop) and

append each to bulk_indicators:

bulk_indicators.append(bi)

Lastly, upload the bulk_indicators using the tq.bulkuploadindicators() method:

tq.bulkuploadindicators(bulk_indicators, source=Source('Test')

ThreatQ Working with Indicators

ThreatQ SDK v1.6.7 11



Working with Events

The following provides several examples of working with events.

l List All Indicators

l Search for a Specific Event

l Create a New Event

ListAllEvents

To list all the events in ThreatQ, you can use the base tq.get() method against the /ap-

i/events endpoint. This will return a list of dist representations of an event. If you print

the first element of the list, you can see the data returned by the API.

events = tq.get('/api/events')

print events.get('data')[0]

{

"hash": "3ebe478a05e4a7981f94dfcfab31ee14",

"description": "Desc for Internal Domain Controller Com-

promised",

"title": "Internal Domain Controller Compromised",

"created_at": "2016-10-21 11:43:37",

"type_id": 5,

"updated_at": "2016-10-21 11:43:37",

"happened_at": "2016-10-21 11:43:35",

"id": 2

}

ThreatQ Working with Events

ThreatQ SDK v1.6.7 12



SearchforaSpecificEvent

To search for a specific event, pass the title to the params parameter. This will return

the same dict representation of an event like above.

event = tq.get('/api/events', params={'title': 'Internal

Domain Controller Compromised'})

print event.get('data')

[

{

"hash": "3ebe478a05e4a7981f94dfcfab31ee14",

"description": "Desc for Internal Domain Controller

Compromised",

"title": "Internal Domain Controller Compromised",

"created_at": "2016-10-21 11:43:37",

"type_id": 5,

"updated_at": "2016-10-21 11:43:37",

"happened_at": "2016-10-21 11:43:35",

"id": 2

}

]

CreateaNewEvent

To create an event, you must import the Event and Source objects.

from threatqsdk import Event, Source

Next, to create a basic event, set some required values:

ThreatQ Working with Events

ThreatQ SDK v1.6.7 13



l title

l type

l date

Optionally, you can also set a description.

event = Event(tq)

event.set_title('OMG MALWARE')

event.set_type('Incident')

event.set_date('2017-01-13 10:59:00')

event.set_desc('Foo')

Finally, upload the event and receive the new event ID

eid = event.upload(sources='Test')

To add an attribute key/value pair to the event we created above:

event.add_attribute('Severity', 'High', sources='Test')

ThreatQ Working with Events

ThreatQ SDK v1.6.7 14



Working with Adversaries

The following provides several examples of working with adversaries.

l List All Adversaries

l Search for a Specific Adversary

l Create a New Adversary

l Add an Attribute

ListAllAdversaries

To list all the adversaries in ThreatQ, you can use the base tq.get method against the

api/adversaries endpoint. This will return a list of dict representations of an

adversary. If we print the first element of the list, we can see the data returned by the

API.

adversaries = tq.get('/api/adversaries')

print adversaries.get('data')[0]

{

"updated_at": "2017-10-03 14:30:53",

"touched_at": "2017-10-03 14:31:04",

"created_at": "2017-10-03 14:30:53",

"id": 2,

"name": "Comment Panda"

}

ThreatQ Working with Adversaries

ThreatQ SDK v1.6.7 15



SearchforaSpecificAdversary

To search for a specific adversary, pass the name to the params parameter. This will

return the same dict representation of an adversary as above.

adversary = tq.get('/api/adversaries' params={'name': 'PLA

Unit 61398'})

print adversary.get('data')

[

{

"updated_at": "2017-10-03 14:30:54",

"touched_at": "2017-10-03 14:31:04",

"created_at": "2017-10-03 14:30:54",

"id": 3,

"name": "PLA Unit 61398"

}

]

The SDK also has a search function for Adversary objects. Instead of returning the raw

response from the API, the SDK will translate it to an Adversary object. Below, perform

the same search as above, but instead of a dict object, we are now working with an

Adversary object.

from threatqsdk import Adversary

adv = Adversary(tq)

aid = adv.search('PLA Unit 61398')

print aid

3

ThreatQ Working with Adversaries

ThreatQ SDK v1.6.7 16



CreateaNewAdversary

To create an adversary, you must import the Adversary and Source objects.

from threatqsdk import Adversary, Source

Next, to create a basic adversary, set the required name attribute. You can also set a

description.

adv = Adversary(tq)

adv.name = 'APT 99'

adv.description = 'Malicious attack group'

Finally, upload the adversary and receive the new adversary ID

aid = adv.upload(sources=Source('Test'))

AddanAttribute

To add an attribute key/value pair to the iadversary you created above

adv.add_attribute('Vertical', 'Hospitality', sources=Source

('Test'))

ThreatQ Working with Adversaries

ThreatQ SDK v1.6.7 17



Working with Files

The following provides several examples of working with files.

l Upload a New File

l Parse and Import Indicators from a File

UploadaNewFile

To create a file, you must import the File and Source objects.

from threatqsdk import File, Source

Next, to create a basic file, set the required values:

l name

l ftype

l path

Optionally, you can also set a title.

file = File(tq)

file.name = 'my-intel-report'

file.ftype = 'Intelligence Report'

file.path = '~/report.pdf'

file.title = 'My Threat Report'

Finally, upload the file. The SDK will translate the API response and update the File

object with the new file ID.

ThreatQ Working with Files

ThreatQ SDK v1.6.7 18



Note:This behavior differs from other objects.

file.upload(sources=Source('Test'))

print file.fid

1

ParseandImportIndicatorsfromaFile

At times, files contain indicator values you may want to parse and add to your Threat

Library. The SDK allows for this use case and only requires that a File be created and

uploaded first before being parsed.

In this example, let's assume that a text file was uploaded and has a file ID of 2. To

parse all the indicators, save them as Active and with the source Test Source The

method below uses the default Generic Text parser.

file = File(tq)

file.fid = 2

file.parse_and_import('Test Source', status='Active')

ThreatQ Working with Files

ThreatQ SDK v1.6.7 19


	Introduction
	Installation
	Authentication

	Working with Indicators
	List All Indicators
	Search for a Specific Indicator
	Create a New Indicator
	Add an Attribute
	Update an Indicator's Status
	Bulk Uploading Indicators

	Working with Events
	List All Events
	Search for a Specific Event
	Create a New Event

	Working with Adversaries
	List All Adversaries
	Search for a Specific Adversary
	Create a New Adversary
	Add an Attribute

	Working with Files
	Upload a New File
	Parse and Import Indicators from a File


